
A COMPUTATIONAL THEORY OF SELECTION BY CONSEQUENCES APPLIED TO
CONCURRENT SCHEDULES

J. J MCDOWELL, MARCIA L. CARON, SAULE KULUBEKOVA, AND JOHN P. BERG

EMORY UNIVERSITY

Virtual organisms animated by a computational theory of selection by consequences responded on
symmetrical and asymmetrical concurrent schedules of reinforcement. The theory instantiated
Darwinian principles of selection, reproduction, and mutation such that a population of potential
behaviors evolved under the selection pressure exerted by reinforcement from the environment. The
virtual organisms’ steady-state behavior was well described by the power function matching equation,
and the parameters of the equation behaved in ways that were consistent with findings from
experiments with live organisms. Together with previous research on single-alternative schedules
(McDowell, 2004; McDowell & Caron, 2007) these results indicate that the equations of matching theory
are emergent properties of the evolutionary dynamics of selection by consequences.
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_______________________________________________________________________________

McDowell (2004) proposed a theory of
behavior dynamics in the form of a computa-
tional model of selection by consequences.
The theory uses Darwinian principles of
selection, reproduction, and mutation to cause
a population of potential behaviors to evolve
under selection pressure exerted by reinforce-
ment from the environment. A virtual organ-
ism animated by the theory emits a behavior
from the population of potential behaviors
every time tick, or generation, which creates a
continuous stream of behavior that can be
studied by standard behavior-analytic meth-
ods.

The computational theory operates in such
a way that reinforcement tends to concentrate
behavior in one or more target classes, which
are analogous to key pecks or lever presses,
while nonreinforcement and mutation tend to
spread responding among all classes of behav-
ior. At equilibrium these opposing tendencies
cause a target response rate to vary around a

steady-state value. McDowell (2004) and
McDowell and Caron (2007) showed that
when applied to single-alternative random
interval (RI) schedules, the theory generated
equilibrium response rates that were accurate-
ly described by forms of the Herrnstein (1970)
hyperbola. In their experiments, repeated
application of low-level rules of selection,
reproduction, and mutation produced high-
level quantitative order known to characterize
the behavior of live organisms. In other words,
the Herrnstein hyperbola was shown to be an
emergent property of the dynamics of selec-
tion by consequences.

The computational theory can also be
applied, without material modification, to
responding on concurrent schedules. The
behavior of live organisms on concurrent
schedules has been studied extensively and is
known to be governed by the power-function
matching equation, which is
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where the Bs refer to response rates, the Rs
refer to reinforcement rates, and the numer-
ical subscripts identify the two components of
the concurrent schedule. The bias parameter,
b, in this equation is known to vary from unity
when there are asymmetries between the two
alternatives of the concurrent schedule
(Baum, 1974b, 1979; McDowell, 1989; Wear-
den & Burgess, 1982). The parameter, a, may
also vary from unity in ways that are referred to
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as undermatching (a , 1) or overmatching (a
. 1). Undermatching is the far more common
outcome in experiments with live organisms,
and a is usually found to vary around a value of
about 0.8 (Baum, 1974b, 1979; McDowell,
1989; Myers & Myers, 1977; Wearden &
Burgess, 1982).

The purpose of the present experiment was
to study the responding of virtual organisms
animated by the dynamic theory of selection
by consequences on concurrent schedules of
reinforcement. Before presenting details, the
theory will be described in general terms.

The computational theory of selection by
consequences consists of a genetic algorithm
(Goldberg, 1989; Holland, 1992) that is used
to cause a population of 100 potential behav-
iors to evolve under the selection pressure
provided by reinforcement from the environ-
ment. Each behavior in the population is
represented by a ten-character string of 0 s
and 1 s that constitutes the behavior’s geno-
type. The decimal integer represented by this
binary string constitutes the behavior’s pheno-
type. For example, a behavior might be
represented by the string ‘‘0001101011’’,
which is the binary representation of the
decimal integer, 107. Behaviors are sorted into
classes based on their integer phenotypes.
With ten-character binary strings, integer phe-
notypes can range from 0 (‘‘0000000000’’)
through 1023 (‘‘1111111111’’). To arrange a
concurrent schedule, one target class of
behavior might be defined as the 41 integers
from 471 through 511, and a second target
class might be defined as the 41 integers from
512 through 552. The remaining 942 integers
would then constitute a class of extraneous, or
nontarget, behaviors. From every population
of potential behaviors one behavior is emitted
each generation or time tick. The class that is
the source of the emitted behavior is deter-
mined by the relative frequencies of the
behaviors in each class. For example, if 10 of
the 100 potential behaviors are in the first
target class, 25 of the potential behaviors are in
the second target class, and the remaining 65
are in the extraneous class, then the probabil-
ities of emission from the three classes are .10,
.25, and .65.

Once a behavior is emitted, a new popula-
tion of 100 potential behaviors is generated
from 100 pairs of parent behaviors that are
selected from the existing population. These

parents are selected in one of two ways,
depending on whether the emitted behavior
was reinforced. If it was reinforced, then the
behaviors in the population are assigned
fitness values that indicate how similar they
are to the reinforced behavior. A parental
selection function is then used to choose
parents such that fitter behaviors are more
likely to be chosen as parents than less fit
behaviors. As will be explained in detail later,
the mean of the parental selection function
determines the strength of the selection event.
Stronger selection events result in fitter
parents, which tend to produce fitter off-
spring, that is, behaviors more like the
reinforced behavior. If, on the other hand,
the emitted behavior did not produce rein-
forcement, then parents are selected at ran-
dom from the existing population of potential
behaviors.

Parent behaviors reproduce by contributing
some of their bits to a child behavior. The 100
pairs of parent behaviors create 100 child
behaviors, which constitute the new popula-
tion of potential behaviors. A small amount of
random mutation is then added to the
population by, say, flipping a single, randomly
selected bit in a percentage of behaviors
selected at random from the population. The
behaviors in the now-mutated population are
then sorted into classes based on their
phenotypes, and the next behavior to be
emitted is determined as described earlier.
This process of selection, reproduction, and
mutation is then repeated, and the resulting
continuous stream of behavior is recorded just
as in an experiment with live organisms.

It is important to note that in this novel
application to concurrent schedules, the ge-
netic algorithm that implements the evolu-
tionary theory is not materially different from
the algorithm that was used in previous
research with single schedules (Kulubekova &
McDowell, 2008; McDowell, 2004; McDowell &
Caron, 2007). The details of the algorithm are
described in the Procedure section below.

The purpose of the first two phases of the
present experiment was to compare behavior
generated by the evolutionary dynamics of
selection by consequences to the behavior of
live organisms. In Phase 1, responding gener-
ated by the computational theory was studied
on a series of symmetrical concurrent RI RI
schedules. The schedules were symmetrical
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inasmuch as the forms and means of the
parental selection functions were the same in
both components of each schedule, as were
the methods of implementing reproduction
and mutation. This is the canonical concur-
rent schedule experiment. In Phase 2, re-
sponding was studied on a series of asymmet-
rical concurrent RI RI schedules. In these
schedules, the forms of the parental selection
functions were the same in both components,
as were the methods of implementing repro-
duction and mutation, but the means of the
parental selection functions differed in the two
components. McDowell (2004) suggested that
the mean of a parental selection function
could be taken to represent the magnitude of
a reinforcer ceteris paribus. Hence, these sched-
ules can be seen as arranging different
reinforcer magnitudes in the two components.
The purpose of the third phase of the present
series of experiments was to study quantitative
properties of the computational theory. In this
phase, the mutation rate and the mean of the
parental selection function were varied over
wide ranges in symmetrical concurrent RI RI
schedules. The form of the parental selection
function and the methods of implementing
reproduction and mutation were the same for
all components of all schedules in this phase
of the project.

METHOD

Subjects

Virtual organisms having repertoires of 100
potential behaviors at each moment, or tick, of
time served as subjects. Each behavior in a
population of potential behaviors was repre-
sented by a 10-character string of 0 s and 1 s,
which constituted the behavior’s genotype.
The decimal integer represented by the binary
string constituted the behavior’s phenotype.
Ten-character binary strings decode into the
1024 possible integers from 0 through 1023.
This range of integers was taken to be circular,
which is to say that it wrapped back upon itself
from 1023 to 0. For this circular segment of
integers, the distance between two integer
phenotypes, x and y, is |x 2 y| when going one
way around the circle, and 1024 2 |x 2 y| when
going the other way. For example, the distance
between 0 and 1023 is 1023 when going in the
direction of increasing magnitude, and is 1
when going in the opposite direction. The

difference between two integer phenotypes was
defined as the smaller of these two distances.
According to this definition, the difference
between 0 and 1, to take an example, is the
same as the difference between 0 and 1023.

The behaviors in a population were sorted
into one of three classes based on their
phenotypes. Two target classes were defined
by the 41 integers from 471 through 511, and
the 41 integers from 512 through 552. An
extraneous class of behavior was defined by the
remaining 942 integers. Each population of
potential behaviors existed for one time tick,
or generation, during which a behavior from
one of the three classes was emitted. The
probability of emission from each class was
equal to the relative frequency of the behaviors
in that class. For example, if a population
consisted of 5 behaviors in the first target class,
10 in the second target class, and 85 in the
extraneous class, then the probabilities of
emission from the three classes were .05, .10,
and .85. The fixed class structure of the
population determined operant levels, or
baseline probabilities of responding, for the
three classes. These probabilities were .04 (5
41/1024) for each of the target classes, and .92
(5 942/1024) for the extraneous class.

Apparatus and Materials

Phases were conducted on computers with
Intel Pentium III or better processors, running
at 498-MHz or faster, with at least 184 MB of
RAM installed. The genetic algorithm that
created and animated the virtual organisms
was a computer program written in VB .NET.
The program implemented the algorithm
described in the Procedure section below.
The output of the organism program interact-
ed with an environment program, also written
in VB .NET, which ran on the same computer
as the organism program and arranged the
concurrent schedules. The resulting sequenc-
es of target and nontarget responses and their
consequences were stored in standard data-
bases and analyzed with standard software.

Procedure

All concurrent schedules arranged occasion-
al reinforcement for behavior emitted from
the two target classes according to indepen-
dent RI schedules. Intervals for each RI
schedule were drawn randomly with replace-
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ment from an exponential distribution of
intervals with a specified mean value. Hence,
the RI schedules were idealized Fleshler-Hoff-
man (Fleshler & Hoffman, 1962) variable-
interval (VI) schedules. We have found that
20-interval Fleshler-Hoffman VI schedules pro-
duce nearly exponential distributions of inter-
vals. The component RI schedules operated
just as in an experiment with live organisms.
Each generation the interval timers advanced
one tick. If a behavior was emitted from a
target class, then its associated RI schedule was
queried; if a reinforcer was set up on that
schedule, then it was delivered and a new
interval was scheduled. Once a reinforcer was
set up by a schedule it was held until obtained.

If a behavior was emitted from one of the
target classes and it was reinforced, then a
midpoint fitness method (McDowell, 2004)
was used to assign fitness values to each
behavior in the population of potential behav-
iors. According to the midpoint fitness meth-
od, the fitness of a behavior is the difference, as
defined earlier, between the behavior’s phe-
notype and the phenotype at the midpoint of
the class from which the just-reinforced
behavior was emitted. For example, if the
just-reinforced behavior was emitted from the
first target class (with phenotypes 471 through
511), then the midpoint used to assign fitness
values was 491. A behavior in the population
with a phenotype of 400 would therefore have
a fitness value of |400–491| 5 91, and a
behavior with a phenotype of 512 would have
a fitness value of |512 2 491| 5 21. Because the
latter behavior is less different than the criterion
midpoint, it is the fitter behavior. It is helpful
to keep in mind that this method assigns
smaller fitness values to fitter behaviors.

Once fitness values were assigned to the
behaviors in the population, a linear parental
selection function was used to select parents
for mating on the basis of their fitness. This
function expresses the probability density,
p(x), associated with a behavior of fitness, x,
of becoming a parent as

p xð Þ~ {
2

9m2
x z

2

3m
, ð2Þ

for 0 # x # 3m, where m is the mean of the
density function. Notice that probability den-
sity decreases as fitness decreases (i.e., as the
fitness value, x, increases) until it reaches a

value of 3m. Behaviors with fitness values of 3m
and greater have no chance of becoming
parents. This same parental selection function
was used in previous research with single
schedules (Kulubekova & McDowell, 2008;
McDowell, 2004; McDowell & Caron, 2007;
McDowell, Soto, Dallery & Kulubekova, 2006)
and is the simplest linear density function that
depends only on its mean. A father behavior
was chosen from the population by drawing a
fitness value at random from the distribution
specified by Equation 2, and then searching
the population for a behavior with that fitness.
If none was found, then another fitness value
was drawn from the distribution, and so on,
until a father behavior was obtained. A mother
behavior was chosen in the same way, but with
the requirement that it be distinct from the
father behavior. One hundred pairs of parents
were obtained in this way. All parents were
selected with replacement, which means that a
behavior could be a parent more than once,
and could have multiple partners. A detailed
discussion of parental selection functions,
including methods of drawing random values
from them, can be found in McDowell (2004).

The process of assigning fitness values and
selecting parents using Equation 2 occurred
only if the emitted behavior was reinforced. If
the emitted behavior came from one of the
target classes but was not reinforced, or if it
came from the extraneous class, then 100 pairs
of parents were randomly selected with re-
placement from the population, with the
requirement that the father and mother
behaviors in a pair be distinct. Again, a given
behavior could be a parent more than once
and could have multiple partners.

A child behavior was created from each pair
of parents by building a new 10-character bit
string based on the parents’ genotypes. Each
bit in the child’s string had a .5 probability of
being identical to the bit in the same location
of the father’s bit string, and a .5 probability of
being identical to the bit in the same location
of the mother’s bit string. This method of
reproduction was used in previous research
with single schedules (Kulubekova & McDow-
ell, 2008; McDowell, 2004; McDowell & Caron,
2007), where it was referred to as bitwise
reproduction. It generates children that re-
semble their parents to varying degrees, where
resemblance refers to the difference, as defined
earlier, between the phenotypes of parents
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and offspring. The 100 child behaviors created
in this way constituted the new population of
potential behaviors.

A small amount of mutation was added to
the new population by flipping one randomly
selected bit in a percentage of behaviors
chosen at random from the population. This
method of mutation was referred to as bitflip
mutation in previous research with single
schedules (Kulubekova & McDowell, 2008;
McDowell, 2004; McDowell & Caron, 2007).
The mutation rate specifies the probability
that a behavior will mutate. For example, if the
mutation rate is 1%, then each behavior in a
population has a .01 probability of mutating. If
a behavior does mutate, a location in the 10-
character bit string is chosen at random and
the bit at that location is changed from 0 to 1
or from 1 to 0. Using this method, a
population of potential behaviors may have
any number of mutants from 0 to 100, but
across generations the mutation rate converg-
es on the specified percentage.

Following mutation, the behaviors were
sorted into classes and a behavior from one
of the classes was emitted based on the relative
frequencies of the behaviors in each class, as
described earlier, and then the process of
selection, reproduction and mutation was
repeated for the duration of the experiment.
Each population constituted a generation, and
lasted one time tick.

The target classes of behavior were defined
so as to have maximum Hamming distances
(Russell & Norvig, 2003) at their boundaries.
This introduced an effect similar to that
introduced by a changeover delay (COD).
The Hamming distance between two bit strings
of equal length is the number of bits that must
be changed to convert one string into the
other. The Hamming distance between the
upper boundary of the first target class (511 5
‘‘0111111111’’) and the lower boundary of the
second target class (512 5 ‘‘1000000000’’) was
ten, which is the maximum Hamming distance
for a 10-character string. The Hamming
distance between the upper boundary of the
second target class (552 5 ‘‘1000101000’’) and
the lower boundary of the first target class (471
5 ‘‘0111010111’’) was also ten. This means
that it was relatively difficult for recombination
or mutation to cause a potential behavior to
switch from one target class to the other. The
result was responding that tended to be

concentrated in bouts in a target class. Target
classes with small Hamming distances at their
boundaries tend to produce frequent switch-
ing between classes, just as often occurs in the
absence of a COD in experiments with live
organisms.

At the start of each concurrent schedule,
artificial forced-choice shaping was imple-
mented by preloading the population of
potential behaviors with roughly equal num-
bers of behaviors in the two target classes. This
ensured that at the start of exposure to each
schedule, the probabilities of emitting behav-
iors from the target classes were roughly equal,
and an order of magnitude larger than their
baseline probabilities. This shaping was not
necessary; it simply decreased the number of
generations required to reach equilibrium.

Phase 1. Virtual organisms animated by the
computational theory responded on 11 inde-
pendent concurrent RI RI schedules of rein-
forcement. The RI values in one component of
the schedule were 20, 30, 40, 50, 60, 70, 80, 90,
100, 110, and 120 time ticks. These were
paired with the same RI schedules in the
second component, but in reverse order.
Hence, the first schedule was a concurrent RI
20 RI 120, the second was a concurrent RI 30
RI 110, and so on. The mean of the linear
parental selection function was 40 in both
components of all schedules, and the muta-
tion rate was 10% in all schedules. Sessions on
each concurrent schedule continued for
20,500 generations, or time ticks. The series
of 11 concurrent schedules was repeated 10
times, yielding about 2 3 106 generations of
responding.

Phase 2. Virtual organisms animated by the
computational theory responded on 4 sets of
11 independent concurrent RI RI schedules of
reinforcement. The mean of the linear paren-
tal selection function was 10, 25, 55, or 70 in
one component of each set of schedules, and
was 40 in the other component. The compo-
nent RI schedules were the same as those used
in Phase 1. The mutation rate was 10% in all
schedules, and sessions on each schedule
continued for 20,500 generations. Each of
the four sets of 11 concurrent schedules was
repeated four times, yielding about 4 3 106

generations of responding.
Phase 3. Virtual organisms animated by the

computational theory responded on sets of 11
independent concurrent RI RI schedules of
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reinforcement at all possible combinations of
four parental selection function means and 10
mutation rates. The parental selection func-
tion means were the same in both components
of each concurrent schedule and were 20, 40,
60 or 80. The mutation rates were 0.5, 1, 2, 3,
5, 7.5, 10, 12, 20, and 50%. The component RI
schedules were the same as those used in
Phase 1. Sessions on each schedule continued
for 20,500 generations. Each set of 11 concur-
rent schedules was repeated 5 to 20 times,
yielding a total of about 7 3 107 generations of
responding.

RESULTS

Reinforcements and responses were accu-
mulated in 500-generation blocks. The first
500-generation block on each schedule was
discarded, and average reinforcement and
response frequencies were calculated over
the remaining forty 500-generation blocks.
All analyses were conducted on these average
frequencies. In what follows, the first alterna-
tive or component refers to the target class
defined by the integers from 471 through 511;
the second alternative or component refers to
the other target class.

Phase 1

The logarithmic transformation of Equa-
tion 1,

log
B1

B2

� �
~ a log

R1

R2

� �
z log b, ð3Þ

was fitted to the response ratios and reinforce-
ment ratios from each of the 10 repetitions of
the concurrent schedule experiment. Plots of
the data and the least-squares fits for 4 of the
repetitions are shown in Figure 1. Values of
the exponents, a, and the bias parameters, b,
for each fit, and the proportions of variance
accounted for by the fit are listed in Table 1
for all repetitions of the experiment. The
results shown in Figure 1 and Table 1 indicate
that the power-function matching equation
provided an excellent description of the
steady-state behavior generated by the theory,
accounting for between 97% and 100% of the
variance, with a mean of 98% of the variance
accounted for. The residuals for each fit were
examined by plotting the standardized residu-
als against the log response ratios predicted by

the best-fitting Equation 3. No consistent
polynomial trends were evident across fits.
When the residuals from all 10 fits were
pooled, the same absence of polynomial
trends was observed.

As shown in Table 1, the exponent, a, varied
from 0.76 to 0.89 over the 10 fits, with an
average of 0.82, which indicates a moderate
degree of undermatching. The bias parameter,
b, varied from 0.92 to 1.03, with a mean of 0.99,
indicating the absence of bias in responding
on these symmetrical concurrent schedules.

The average number of changeovers (COs)
per 500 generations is plotted in Figure 2 as a
function of the average reinforcement propor-
tion obtained from the first alternative of the
concurrent schedule. COs from all repetitions
are pooled in the figure. Hence there is one
data point for each of the 11 concurrent
schedules in the canonical experiment, times
10 repetitions of the experiment. The smooth
curve is the best-fitting quadratic polynomial,
which simply illustrates the trend. As is clear
from the figure, the CO rate was greatest when
the two alternatives delivered similar propor-
tions of reinforcement (around .5) and was
least when they delivered very discrepant
proportions of reinforcement (around .1 and
.9). In general, the more discrepant the
reinforcement rates in the two alternatives,
the less frequent were the COs. Although the
quadratic polynomial in Figure 2 is an arbi-
trary form, it in fact provided a good descrip-
tion of the CO data inasmuch as the standard-
ized residuals plotted against the CO rates
predicted by the fitted quadratic showed no
polynomial trends.

Phase 2

Equation 3 was fitted by the method of least
squares to the 16 sets of concurrent schedule
data, 4 each having parental selection function
means of 10, 25, 55, and 70 in the first
component, and all having parental selection
function means of 40 in the second compo-
nent. Recall that smaller means correspond to
stronger selection events and consequently
may be taken to represent larger reinforcer
magnitudes ceteris paribus. Plots of 2 of the 16
sets of data, one with a parental selection
function mean of 10 in the first component
(C063) and one with a parental selection
function mean of 70 in the first component
(C374), are shown in the top panel of
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Figure 3, along with the best fitting straight
lines, their equations, and the proportions of
variance they account for. Evidently, Equa-
tion 3 described these data well. For C063
the stronger selection events arranged in the
first alternative of the schedule produced
biased responding in favor of that alterna-
tive, as indicated by the positive intercept of
the best-fitting line. For C374 the stronger
selection events arranged in the second
alternative of the schedule produced respond-
ing biased in favor of that alternative, as
indicated by the negative intercept of the
best-fitting line.

The parameter values and proportions of
variance accounted for are listed in Table 2 for

Fig. 1. Log response ratios plotted against log reinforcement ratios for four repetitions of the canonical concurrent
schedule experiment. Straight lines are least-squares fits of Equation 3. The codes in the upper left of each panel identify
the repetition. Equations of the best-fitting lines and the proportions of variance they account for (r2) are given in
each panel.

Table 1

Exponents, a, and bias parameters, b, from least-squares
fits of Equation 3 to Phase 1 data, and the proportion of
variance accounted for (pVAF) by the fits.

Rep. ID a b pVAF

C039 0.84 1.01 0.99
C040 0.85 1.03 0.99
C041 0.80 0.92 0.98
C042 0.80 0.98 0.98
C043 0.87 1.03 0.98
C044 0.77 0.90 0.97
C045 0.82 1.03 1.00
C046 0.83 0.95 0.99
C048 0.76 0.99 0.98
C049 0.89 1.01 0.98
Mean 0.82 0.99 0.98

Note. Codes in the first column identify the repetitions.
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all 16 data sets. The proportions of variance
accounted for (pVAFs) in the table indicate
that Equation 3 described the data well. In
addition, residuals plotted as in Phase 1
showed no consistent polynomial trends for
any fit, or when pooled across fits. The average
bias parameters and exponents calculated
from the individual values in Table 2 are
plotted in the bottom panel of Figure 3 as a
function of the parental selection function
mean in the first component of the concurrent
schedule. The averages for the parental
selection function mean of 40 were taken
from Table 1. As the plot shows, bias consis-
tently favored the stronger selection event.
The average bias declined from a high of 2.4
when the parental selection function means
were 10 and 40, passed through 1.0 when
the means were 40 and 40, and fell to 0.7
when the means were 70 and 40. Across
this range, the average exponent of the best
fitting lines remained constant at a value of
about 0.83, as indicated by the unfilled
diamonds in the bottom panel of Figure 3.
Hence, the exponent remained constant even
as the bias parameter changed by an order of
magnitude.

Phase 3

Equation 3 was fitted to each repetition of
11 concurrent schedules at all combinations of
10 mutation rates and four parental selection
function means. The exponents, a, and bias
parameters, b, averaged over repetitions at
each combination of mutation rate and
parental selection function mean are listed in
Table 3, along with their standard errors. The
numbers of repetitions, and the proportions of
variance accounted for (pVAF) averaged over
repetitions, are listed in the second and
seventh columns of the table.

The pVAFs in Table 3 show that in most
cases Equation 3 provided a good description
of the data, accounting for between 65% and
100% of the variance in the log response
ratios, with an average of 93% (median 5
96%) of the variance accounted for. The
pVAFs tended to be slightly higher for
stronger selection events (lower parental
selection function means) across all mutation
rates. In addition, the pVAFs were highest at
mutation rates from about 5% to about 10%,
regardless of parental selection function
mean. At mutation rates below this range,
the pVAFs fell, sometimes markedly, to a low

Fig. 2. Average number of changeovers (COs) per 500 generations plotted against the average reinforcement
proportion obtained from the first alternative. Data from all repetitions of the canonical experiment are plotted. The
smooth curve is the best-fitting quadratic polynomial, which simply illustrates the trend.
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of .65 when the parental selection function
mean was 80. At mutation rates above this
range, pVAFs fell more modestly, to a low of
.83, again when the parental selection function
mean was 80. Studies of the residuals indicated
that the lower pVAFs were due to random
variability around the least-squares fit of
Equation 3 rather than to systematic devia-
tions from the equation.

Across the 330 fits summarized in Table 3,
plots of the standardized residuals against the
log response ratios predicted by Equation 3
showed no consistent polynomial trends. In
addition, when the standardized residuals were
pooled across repetitions at each combination
of mutation rate and parental selection func-
tion mean, no polynomial trends were evident.
To test further the residuals for randomness
the three statistical tests recommended by
Reich (1992), and used in previous research
(McDowell, 2004), were applied to each of the
330 sets of residuals. These include a test for
the expected number of residuals of one sign,
the expected number of runs of residuals of
the same sign, and the expected lag-1 auto-
correlation of the residuals, all given the null
hypothesis of randomness. If a set of residuals
failed one or more of these tests, that is, if for
at least one test the null hypothesis of
randomness was rejected at an a-level of .05,
then that set of residuals was identified as
nonrandom. Of the 330 sets of residuals, 39
were identified as nonrandom using this
method. Applying the binomial test recom-
mended by McDowell (2004), which takes into
account the cumulative Type I error rate of the
three Reich tests (cumulative a 5 .1426), the
binomial probability of identifying 39 of 330
sets of residuals as nonrandom under the null
hypothesis of randomness was .91. This indi-
cates that the collection of 330 sets of residuals
can be considered random.

The average exponents listed in Table 3 are
plotted in the top panel of Figure 4. Lower
parental selection function means, which
correspond to stronger selection events, tend-
ed to produce higher exponents across all
mutation rates, with an upper boundary of
about 0.85. In addition, exponents tended to
cluster around 0.8 at mutation rates from
about 5% to about 10%, regardless of parental
selection function mean. At mutation rates
below the 5–10% range, exponents tended to
decline modestly; at mutation rates above this

Fig. 3. Top panel: Filled diamonds represent data
from repetition C063, in which parental selection function
means of 10 and 40 were arranged in the two components
of the concurrent schedule. The best-fitting line is plotted
through the points, and its equation and the proportion of
variance it accounts for are given in the upper right of the
panel. Unfilled diamonds represent data from repetition
C374, in which parental selection function means of 70
and 40 were arranged in the two components of the
concurrent schedule. The best fitting line is plotted
through the points and its equation and the proportion
of variance it accounts for are given in the lower left of the
panel. Bottom panel: Average bias parameters (filled
diamonds) and exponents (open diamonds) plotted
against the mean of the parental selection function
arranged in the first component of the schedule. Averages
are across the individual parameter values listed in
Tables 1 and 2.
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range, exponents declined markedly. In con-
trast to changes in the exponents, the average
bias parameters remained roughly constant
across mutation rates and parental selection
function means, varying from 0.93–1.12 over
the 40 combinations of mutation rate and
parental selection function mean, with an
overall mean of 1.01 (median 5 1.00).
Although the bias parameters remained
roughly constant, they tended to be more
variable at lower mutation rates.

To obtain a better understanding of the
joint effect of parental selection function
mean and mutation rate on the exponents it
is helpful to examine only those exponents
with values from 0.7 through 0.9, which could
be considered a range of more or less typical
average exponents for live organisms. Expo-
nents with values in this range are plotted in
the middle panel of Figure 4. Higher expo-
nents were still associated with stronger selec-
tion events in this subset of 25 exponents,
although the effect was more muted than for
the entire set of 40 exponents. Parental
selection function means of 20, 40, 60, and
80 produced overall average exponents of
0.83, 0.79, 0.77, and 0.76 in this subset of the

data. Notice also that the range of mutation
rates yielding average exponents from 0.7
through 0.9 increased with the strength of
the selection events. The ranges were 5–10%,
3–12%, 1–20%, and 0.5–20% for parental
selection function means of 80, 60, 40, and
20. In other words, the stronger the selection
event, the greater the range of mutation rates
that produced average exponents roughly
consistent with those from live organisms.
The subset of fits represented in the middle
panel of Figure 4 also tended to have the
largest pVAFs, which varied from .82 to 1.00,
with means of .96, .97, .98, and .97 for the four
parental selection function means in increas-
ing order. Similarly, the bias parameters for
this subset of fits were well behaved, with
averages of 1.04, 1.00, 1.01 and 0.98 for the
four parental selection function means in
increasing order.

It is also worthwhile to examine the individ-
ual exponents for the subset of average
exponents shown in the middle panel of
Figure 4. Relative frequency distributions of
these exponents for each parental selection
function mean are plotted in the bottom panel
of the figure. All distributions had strong
modes at or near 0.8. The distribution for
the parental selection function mean of 20 (N
5 85) had the largest standard deviation
(0.15). Exponents in this distribution varied
from 0.31 to 1.37, the former value indicating
severe undermatching, the latter indicating
moderate overmatching. The distributions for
the other parental selection function means
had smaller Ns (from 40–55) and were less
variable (standard deviations from 0.05–0.08),
although the distribution for the parental
selection function mean of 40 also included
instances of overmatching.

The CO profiles for these concurrent
schedules were studied by fitting a quadratic
polynomial,

y ~ ax2 z bx z c, ð4Þ

to the average COs per 500 generations for
each combination of mutation rate and
parental selection function mean, pooled
across all repetitions of the set of 11 concur-
rent schedules. To obtain the fits, average COs
(represented by y in Equation 4) were plotted
against the proportion of reinforcement ob-
tained from the first alternative of the sched-

Table 2

Exponents, a, and bias parameters, b, from least-squares
fits of Equation 3 to Phase 2 data, and the proportion of
variance accounted for (pVAF) by the fits.

Rep. ID a b pVAF

Linear 10/40
C063 0.84 2.35 1.00
C363 0.86 2.36 0.99
C364 0.83 2.29 0.98
C365 0.90 2.40 0.99

Linear 25/40
C064 0.75 1.41 0.99
C366 0.88 1.42 0.99
C367 0.88 1.41 1.00
C368 0.89 1.42 0.99

Linear 55/40
C065 0.81 0.84 0.99
C369 0.79 0.83 1.00
C370 0.81 0.85 0.99
C371 0.84 0.84 0.98

Linear 70/40
C066 0.86 0.66 0.98
C372 0.84 0.71 0.98
C373 0.80 0.75 0.98
C374 0.84 0.70 0.98

Note. Codes in the first column identify the repetitions.
Spanner headings identify parental selection function
means.
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Table 3

Mutation rate, number of repetitions, means and standard errors of exponents, a, and bias
parameters, b, from least-squares fits of Equation 3, proportions of variance accounted for by the
fits (pVAF), maximum changeover rate (COmax), and the increase in changeover rate from the
rate at a reinforcement proportion of zero to COmax (DCO).

Mutation
rate (%)

No. of
repetitions

a b pVAF

COmax DCOMean S.E. Mean S.E. Mean

Linear 20/20
0.5 10 0.75 0.08 1.12 0.10 0.82 0.04 0.00
1 20 0.80 0.04 1.06 0.17 0.94 0.14 0.05
2 15 0.86 0.04 1.03 0.19 0.96 0.36 0.24
3 5 0.85 0.05 1.09 0.22 0.97 0.75 0.50
5 10 0.83 0.01 1.00 0.13 0.99 2.00 1.42
7.5 10 0.82 0.02 0.98 0.13 0.99 3.59 2.25
10 5 0.86 0.01 1.03 0.10 0.99 5.23 3.64
12 5 0.86 0.02 1.00 0.09 1.00 6.31 4.05
20 5 0.81 0.01 1.00 0.08 0.99 9.69 5.33
50 5 0.52 0.01 1.00 0.07 0.99 15.44 4.85

Linear 40/40
0.5 5 0.68 0.04 1.08 0.07 0.76 0.08 0.03
1 5 0.72 0.05 0.93 0.07 0.90 0.13 0.04
2 10 0.80 0.03 0.99 0.05 0.96 0.61 0.43
3 5 0.83 0.06 1.06 0.08 0.97 1.26 0.80
5 10 0.79 0.01 1.02 0.02 0.99 2.76 1.79
7.5 5 0.82 0.03 1.01 0.03 0.99 4.72 3.00
10 10 0.82 0.01 0.99 0.01 0.98 6.57 4.21
12 5 0.82 0.01 0.99 0.02 0.99 8.03 4.51
20 5 0.70 0.02 1.00 0.01 0.98 11.48 4.91
50 5 0.33 0.01 1.00 0.01 0.95 17.00 2.91

Linear 60/60
0.5 10 0.62 0.04 1.11 0.05 0.73 0.09 0.05
1 10 0.66 0.03 1.06 0.07 0.83 0.24 0.10
2 5 0.68 0.03 1.01 0.03 0.95 0.73 0.35
3 5 0.71 0.02 1.07 0.04 0.96 1.49 0.81
5 10 0.79 0.02 1.00 0.02 0.98 3.24 1.97
7.5 15 0.81 0.01 1.01 0.01 0.98 5.49 3.34
10 5 0.78 0.03 0.98 0.02 0.98 7.54 3.95
12 5 0.77 0.02 0.97 0.02 0.98 8.90 4.60
20 5 0.56 0.02 1.01 0.02 0.96 12.41 4.45
50 5 0.21 0.01 1.00 0.01 0.88 17.68 1.44

Linear 80/80
0.5 20 0.67 0.04 1.02 0.04 0.64 0.12 0.04
1 15 0.66 0.03 1.04 0.06 0.86 0.33 0.16
2 5 0.64 0.02 0.99 0.02 0.93 1.10 0.54
3 5 0.68 0.03 0.98 0.03 0.95 1.87 0.99
5 20 0.78 0.01 0.96 0.01 0.97 3.97 2.38
7.5 15 0.75 0.01 1.00 0.01 0.97 6.28 3.25
10 5 0.74 0.03 0.98 0.01 0.96 8.28 3.87
12 5 0.66 0.02 1.01 0.01 0.96 9.42 3.43
20 5 0.45 0.01 0.99 0.01 0.93 13.22 3.58
50 5 0.16 0.02 1.00 0.01 0.83 17.86 0.43

Note. The latter two quantities were obtained from fits of a quadratic polynomial to changeover data pooled across
repetitions. Spanner headings identity parental selection function means.
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ule (represented by x in Equation 4), as was
done in Figure 2. The vertex of the fitted
parabola is an estimate of the maximum CO
rate for a set of concurrent schedules and is
given by

COmax ~ c {
b2

4a
:

Values of COmax for sets of concurrent
schedules pooled across repetitions are listed
in the penultimate column of Table 3. The
increase in CO from its value at a reinforce-
ment proportion of 0 to its maximum at
COmax is a measure of the parabola’s curvature
in the restricted domain of 0 to 1, and is given
by

DCO ~ {
b2

4a
:

Small values of DCO indicate relatively flat
parabolas whereas large values indicate rela-
tively curved ones in the restricted domain.
Values of DCO for sets of concurrent schedules
pooled across repetitions are listed in the final
column of Table 3.

The values of COmax and DCO listed in the
table indicate that these quantities were
strongly affected by mutation rate. The former
increased with mutation rate, while the latter
increased and then decreased with mutation
rate. Thus, COs were few and the CO profile
was relatively flat at low mutation rates; COs
increased and the CO profile became more
curved at intermediate mutation rates; and
COs increased further but the CO profile
tended to flatten again at the highest mutation
rates. Flattening at the highest mutation rates
was more pronounced for the weaker than for
the stronger selection events.

DISCUSSION

The steady-state behavior of virtual organ-
isms animated by the evolutionary dynamics of
selection by consequences conformed to the
power-function matching equation (Equa-

Fig. 4. Top panel: Average exponents, a, from Ta-
ble 3 plotted against mutation rate. The legend in the
middle panel, which applies to all panels, identifies the
parental selection function means used in the components
of the schedules. Middle panel: Average exponents from
Table 3 having values from 0.7 through 0.9 plotted against
mutation rate. Bottom panel: Relative frequency distribu-
tions of individual exponents, the means of which are

r

plotted in the middle panel. The downrule marks an
exponent of 1.
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tion 1) in all of the present experiments. In
addition, the parameters of the equation
behaved in ways that were consistent with
parameters obtained from experiments with
live organisms. In symmetrical concurrent
schedules (Phases 1 and 3), the bias parameter
varied around a value of approximately 1, and
in asymmetrical concurrent schedules (Phase
2) it tracked the magnitude of the asymmetry.
The average exponent for the Phase 1 data was
0.82, which indicates a degree of undermatch-
ing that is typically found in experiments with
live organisms (Baum, 1974a, 1979; McDowell,
1989; Myers & Myers, 1977; Wearden &
Burgess, 1982). In Phase 2, the average
exponents assumed similar values, varying
between 0.81 and 0.86, and they remained
roughly constant as the bias parameter
changed by an order of magnitude. The
independence of exponent and bias parame-
ter has been observed in experiments with live
organisms (e.g., Dallery, Soto & McDowell,
2005). In Phase 3, the average exponents again
were similar in value, around 0.8, for all
parental selection function means across a
middle range of mutation rates, and for low
parental selection function means (strong
selection events) across a wider range of
mutation rates. Conditions with low parental
selection function means are probably most
analogous to laboratory experiments with live
organisms, which ensure strong reinforcer
values by depriving animals of food or water.
In these conditions, individual exponents in
Phase 3 varied over a wide range, and included
instances of severe undermatching and in-
stances of overmatching, a result that is
consistent with findings from live organisms
(Baum, 1979; Wearden & Burgess, 1982).

The switching behavior observed in Phase 1
was also consistent with data from live organ-
isms (Alsop & Elliffe, 1988; Baum, 1974a;
Brownstein & Pliskoff, 1968; Herrnstein,
1961). Switching was greatest when the com-
ponents of the schedule delivered roughly
equal frequencies of reinforcement and was
least when the components delivered the most
discrepant frequencies of reinforcement. The
same pattern of switching was observed in
Phase 3 for most conditions that arranged low
parental selection function means (strong
selection events) and for all conditions over a
middle range of mutation rates, from about
5% to about 10%. The CO profiles tended to

flatten at the lowest and highest mutation
rates.

To summarize, for conditions that arranged
relatively low parental selection function
means over a relatively wide range of mutation
rates, and for all conditions over a middle
range of mutation rates, in both symmetrical
and asymmetrical concurrent schedules, the
behavior generated by the computational
theory was qualitatively and quantitatively
indistinguishable from the behavior of live
organisms.

An especially interesting agreement between
theory and data in these experiments was the
value of the exponent of Equation 1. A value
of about 0.8 was found consistently over a
middle range of mutation rates. At mutation
rates below this range, behavior became
perseverative, that is, it tended to get stuck in
a particular class regardless of reinforcement.
Evidently, genotype recombination during
reproduction was not sufficient to counteract
this effect of a low mutation rate; the
consequence was behavior that was less sensi-
tive to the reinforcement rate ratio. The
opposite effect occurred at high mutation
rates, where behavior became impulsive, that
is, it tended to leave its current class regardless
of reinforcement. This resulted in too much
behavioral variability and, consequently, less
sensitivity to the reinforcement rate ratio. That
the limiting value of the exponent was in the
neighborhood of 0.8 is noteworthy. McDowell
and Caron (2007) found a similar limiting
value for the exponent entailed by a form of
Herrnstein’s hyperbola derived from Equa-
tion 1 (McDowell, 2005), when it was fitted to
data generated by virtual organisms respond-
ing on single-alternative RI schedules. This
specific value itself must be an emergent
property of the evolutionary dynamics of
selection by consequences. The emergence of
this specific value, together with the well
known difficulty of identifying independent
variables that affect it (e.g., Wearden &
Burgess, 1982), suggest that it may be a
biological constant, akin to physical constants
like the constant of universal gravitation or
Planck’s constant, albeit with stochastic prop-
erties appropriate to a biological system.

Previous research showed that the compu-
tational dynamics of selection by consequences
yielded behavior on single-alternative RI
schedules that was accurately described by
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forms of the Herrnstein hyperbola (McDowell,
2004; McDowell & Caron, 2007). The present
experiment shows that the theory, without
material modification, produces behavior on
concurrent RI RI schedules that is accurately
described by the power-function matching
equation (Equation 1). Evidently, the equa-
tions of matching theory are emergent prop-
erties of the evolutionary dynamics of selection
by consequences. The quantitative accuracy of
this result is noteworthy inasmuch as the
computational theory consists entirely of low-
level rules of selection, reproduction, and
mutation. These rules govern the emission of
behavior from moment to moment, but they in
no way require the high-level properties of
behavior to be quantitatively consistent with
matching theory. That the outcome produced
by the theory is quantitatively indistinguish-
able from outcomes produced by live organ-
isms, lends support to the idea (McDowell,
2004; McDowell & Caron, 2007) that the
material events responsible for instrumental
behavior are computationally equivalent to
selection by consequences (Wolfram, 2002;
see also Staddon & Bueno, 1991). As noted by
McDowell and Caron, this idea, when taken to
its logical conclusion, suggests that evolution
engineered a copy of itself in the nervous
systems of biological organisms to regulate
their behavior with respect to local environ-
ments during their individual lifetimes.

As was discussed earlier, and elsewhere
(McDowell, 2004), it seems reasonable to
consider the mean of the parental selection
function to be related to reinforcer magni-
tude. The physical referent of mutation rate is
less clear. It may be that this source of
behavioral variability is a more or less fixed
property of an evolved nervous system. An
ideal mutation rate or range of mutation rates
may produce enough variability in behavior to
render it sensitive to a changing environment,
while avoiding degrees of perseveration and
impulsiveness that degrade this sensitivity. It
seems likely that a more or less fixed mutation
rate nevertheless could be affected by physio-
logical abnormalities, and could be modified
by neurosurgical or pharmacological insult.
The possibility of modeling maladaptive per-
severative or impulsive behavior by changing
the mutation rate in the computational model
is an interesting prospect.

The results of this experiment were report-
ed in terms of response allocation, but they
could just as well have been reported in terms
of time allocation. The computational model
does not distinguish between the two. Because
the model allocates each time tick to a class of
behavior, the more fundamental representa-
tion may be time allocation. This also makes
sense for general theoretical reasons. Not all
behaviors occur in brief discrete bouts that can
be counted in a meaningful way, yet all
behaviors can be timed (Baum & Rachlin,
1969). In the present analyses each time tick
was assumed to contain a response, but it
would be possible to permit dead time on an
alternative during which no responding oc-
curred, which would allow the separation of
response and time allocation. An additional
algorithm for determining responding while
on an alternative would be required, which is a
complication that may not be worth the extra
degrees of freedom it would introduce. Be-
cause recent reviews indicate that the results of
response- and time-allocation matching are
the same (Wearden & Burgess, 1982), it may
be prudent to take as fundamental the more
general time-allocation representation. If it
were deemed essential to have a response-
allocation representation for discrete respons-
es, then one could simply assert as an
empirical fact that the probability of respond-
ing is constant while on an alternative, a fact
established by the comparability of response-
and time-allocation results.

Several features of the computational theory
merit further investigation, such as the signif-
icance of the Hamming cliff that separates the
target responses. There are smaller cliffs
elsewhere among the integer phenotypes. For
example, the Hamming distance between 127
(‘‘0001111111’’) and 128 (‘‘0010000000’’) is
8. Hamming distance may be analogous to the
COD in experiments with live organisms; if so,
then a minimal Hamming distance would be
required to obtain matching with a reasonable
exponent, and larger Hamming distances
would have no further effect. An alternative
would be to remove all Hamming cliffs and
arrange a true COD. This could be accom-
plished by using binary-reflected Gray codes
(Goldberg, 1989) to represent the integer
phenotypes. Like binary codes, Gray codes
represent integers using bit strings, but the
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Hamming distance between Gray-code repre-
sentations of successive integers is always 1.

The evolutionary dynamics tested in this
experiment, together with the descriptive
statics of matching theory, constitute a math-
ematical mechanics of instrumental behavior.
Although the descriptive account provided by
matching theory is widely accepted (but cf.
McDowell, 2005), there has been much dis-
agreement about the correct approach to
behavior dynamics. In 1992 an entire issue of
the Journal of the Experimental Analysis of
Behavior (volume 57, number 3) was devoted
to various aspects of this problem. Proposed
dynamic accounts have been based on a variety
of principles and theories including molar
optimality or maximization principles (e.g.,
Baum, 1981; Rachlin, Battalio, Kagel & Green,
1981), molecular maximization (Shimp, 1966),
melioration (Herrnstein, 1982; Vaughan, 1981),
regulatory principles (e.g., Hanson & Timber-
lake, 1983; Staddon, 1979), switching principles
(Myerson & Hale, 1988), linear system theory
(McDowell, Bass & Kessel, 1993), incentive
theory (e.g., Killeen, 1982), and scalar expec-
tancy theory (Gibbon, 1995). None of these
accounts has been widely accepted. Many of
them were developed using differential equa-
tions, which is a traditional continuous mathe-
matical approach to dynamics that has worked
well in science for several centuries. The
differential equation approach usually entails
stating a differential equation, which constitutes
the dynamic theory, and then integrating it to
obtain the equilibrium result. The computa-
tional theory of selection by consequences takes
a different approach by specifying low-level
rules, constituting the dynamic theory, that
must be applied repeatedly to reveal the
higher-level equilibrium outcome, if one exists.
Just as the calculus was invented because
existing algebraic methods were inadequate to
the problems that interested natural philoso-
phers of the time (e.g., Newton), so too some
contemporary scientists have argued that com-
putational approaches represent an advance of
sorts over the calculus in that they may be able to
solve problems, such as the description of
turbulence in fluid flow, that have proved
refractory to more traditional methods (Bent-
ley, 2002; Wolfram, 2002). Computational ap-
proaches have been used to good effect in a
variety of disciplines (see NOVA, July 2007, for a
brief but broad popular survey), and they are

not missing from the literature of behavior
analysis (e.g., Donahoe, Burgos, & Palmer, 1993;
Shimp, 1966, 1992; Staddon & Zhang, 1991).
Staddon and Bueno (1991) have gone so far as
to argue that some sort of computational theory
is likely to be essential for a satisfactory account
of behavior dynamics.

The computational theory of selection by
consequences can be developed further. For
example, McDowell, Soto, Dallery and Kulu-
bekova (2006) proposed an extension of the
theory that includes stimulus control and
incorporates a mechanics of conditioned
reinforcement. The latter consists of a statics
based on Mazur’s (1997) hyperbolic delay
theory of conditioned reinforcement, and a
dynamics based on the Rescorla-Wagner rule
(Danks, 2003). Interestingly, the objective of
these researchers was to propose an alternative
solution to a canonical problem in artificial
intelligence, namely, the problem of generat-
ing adaptive state–action sequences, or poli-
cies, for a virtual or mechanical agent. States in
artificial intelligence are equivalent to discrim-
inative stimuli in behavior analysis. Actions
that may be taken in those states are equivalent
to behaviors under the control of those
discriminative stimuli. McDowell et al.’s work
lies at the interface of behavior analysis and
specialties in artificial intelligence, such as
artificial life, machine learning, and robotics.
Interestingly, a number of other researchers
working in these areas, usually computer
scientists, have turned to behavior analysis to
inform their research (Daw & Touretzky, 2001;
Delepoulle, Preux, & Darcheville, 1999; Mc-
Dowell & Ansari, 2005; Seth, 1999, 2002;
Touretzky & Saksida, 1997). Obviously, the
development and verification of a reasonably
comprehensive theory of behavior dynamics
would be a boon to both behavior analysis and
artificial intelligence, and is certainly worthy of
focused research effort. But there are many
hurdles to overcome. For example, on what
data should a dynamic theory be tested? How
do the many existing theories of behavior
dynamics compare? How do their domains
differ? Can they or parts of them be translated
into any of the other theories or their parts?
These are some of the difficult questions that
will require careful study and debate. Indeed,
the mere task of fully comprehending the
various, sometimes quite complicated, theories
(e.g., Gallistel et al., 2007) is daunting.
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Accordingly, it may be time in our discipline to
welcome specialists in theoretical behavior
analysis, just as there are specialists in theory
in other fields, such as physics. This may seem
a strange idea for a discipline founded on
inductive experimentation. It goes without
saying that this foundation has served our
discipline well; the experimental analysis of
behavior has generated a large body of data
that establishes many important facts about
behavior and the environmental variables that
regulate it. But it may now be time to make a
concerted effort to weave those facts into a
coherent and reasonably comprehensive math-
ematical mechanics of adaptive behavior that
can be widely accepted, and hence can take its
place among the established theories of
science. As this work progresses, and as our
discipline matures, deductive experimenta-
tion, that is, experiments motivated by theory,
will no doubt rise in importance as a second
experimental tradition to complement our
original tradition of inductive research.
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